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a b s t r a c t

The lateral–torsional vibrations of composite beams are investigated in this paper, based

on a variational approach. Composite beams studied in this paper are classified as

composite beams with interlayer slip (composite beams with partial interaction or

layered wood beams) or three-layer sandwich beams. It will be shown in this paper that

both structural systems are governed by the same nature of differential equations. The

theoretical framework of lateral–torsional vibrations of composite beams is given, and

some engineering results are presented for the pinned–pinned strip composite beam. A

simple closed-form solution is achieved for the lateral–torsional natural frequencies.

The results are analogous to the ones obtained for the in-plane vibrations of composite

beams (sandwich beam or composite beams with partial interaction) where the natural

frequencies increase with the stiffness of the connection. Extension of these results to

some more complex loading cases is envisaged, and a numerical procedure will be

probably needed in the general case.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Composite structures of different materials have important applications in civil or mechanical engineering. The out-of-
plane vibrations of partially composite beams are investigated in this paper, based on a variational approach. The
theoretical framework of lateral–torsional vibrations of composite beams is given, and some engineering results are
presented. Composite beams studied in this paper are classified as composite beams with interlayer slip (composite beams
with partial interaction or layered wood beams) or three-layer sandwich beams. It is shown in this paper that both
structural systems are governed by the same nature of differential equations.

Layered composite structural elements are typically encountered in wood design, where wood beams are made from
layers assembled by means of nailing, bolting or gluing. Composite structures of different materials such as timber-
concrete elements or steel-concrete elements are widely used in building engineering. These composite structures are built
up by structural subelements connected by shear connectors to form an interacting unit. In the case of a flexible
connection, the analysis procedure requires consideration of the interlayer slip between the subelements, leading to the
partial interaction concept. The fundamental equations of the theory of layer wood beams or composite structures with
partial interaction were developed by Stüssi [1], Granholm [2], Newmark et al [3] and Pleshkov [4] (see also Ref. [5] or the
recent paper on partially composite beams of Girhammar and Pan [6]). The in-plane vibrations of elastic composite beams
with interlayer slip are investigated by Henghold [7] or Girhammar and Pan [8] who used Euler–Bernoulli beam models for
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each beam (see also Refs. [9,10]). Berczynski and Wroblewski [11] generalize the results of Girhammar and Pan [8] obtained
for Euler–Bernoulli beam models, by using Timoshenko’s beam theory (see also Ref. [12] for the treatment of general
boundary conditions including the in-plane stability problem). Dilena and Morassi [13] recently considered the case of a
continuously damaged connection for the in-plane vibrations of partially composite beams.

Three-layer sandwich beams, on the other hand, may be composed of two identical thin face layers and a thick core
layer [14,15]. The obvious advantage of this construction is the large moment of inertia of the section obtained by spacing
far apart the main carrying elements, namely, the faces. The weight of the structure is small because of the low density of
the core. The key point in using sandwich structures is the possibility of largely reducing weights while keeping the same
equivalent stiffnesses. These sandwich beams have been widely studied in the 1960s especially for their damping dynamic
characteristics [16–19]. These authors used a three-layer sandwich beam theory based on Euler–Bernoulli model for each
beam. Mead [20] or Chonan [21] extended these results incorporating the effect of shear deformation of each beam. All
these studies are devoted to the in-plane vibrations of sandwich beams. Another application of sandwich structural models
can be found in building engineering, where high-rise buildings can be modelled by equivalent sandwich beams (see for
instance Ref. [22]). As shown by Heuer [23] (see also the pioneer paper of McCutcheon [24]), there is a correspondence
between the three-layer sandwich beam and the composite beam with partial interaction. Such a correspondence for the
in-plane vibrations problem can be easily extended for the out-of-plane vibrations problem (see also Challamel and
Girhammar [25] for the correspondence of the lateral–torsional buckling problem).

Even if the lateral–torsional vibrations of composite beams have been extensively studied (see for instance Ref. [26]),
very few works have been devoted to the out-of-plane vibrations of beams with interlayer slip (or sandwich beams). The
recent work of Numayr and Qablan [27] is probably an exception for the free vibrations of sandwich beams. We will present
a slightly different theory, specifically for the torsion–bending coupling in the soft core. There is undoubtedly a need to
elaborate an engineering theory for lateral–torsional vibrations of composite members with partial interaction in simple
structural cases.

2. Energy equations

For the layered or partial composite beam, the cross-section is subdivided into two parts ‘‘1’’ and ‘‘2’’ with regular
boundary along a rectilinear axis orthogonal to the cross-section (see Fig. 1). The kinematic assumptions are similar to the
ones chosen by Dall’Asta [28]. A discontinuity of displacement field can occur at the connection plane (see Fig. 1). In the
theory presented, it is assumed that the connection, denoted as shear connection, does not permit a displacement jump in
the direction orthogonal to the connection plane. In other words, the twisting rotation j must be the same for the two
components. This fundamental assumption related to the kinematics of the present model means that only horizontal slip
along the discontinuity line is allowed (see Fig. 1). A possible generalization of this kinematics could be the coupling
between a vertical and a horizontal displacement jump (and why not a rotation), following the pioneer study of Adekola
[29] restricted to the in-plane behaviour of partially composite beam [29].

The deflection at the onset of buckling is specified by (i) the cross-section rotation angle jðxÞ in the yz plane, (ii) the
displacement w1ðxÞ of the beam axis of the domain ‘‘1’’ in the z direction (h1 represents the depth of layer 1) and (iii) the
displacement w2ðxÞ of the beam axis of the domain ‘‘2’’ in the z direction (h2 represents the depth of layer 2). Each
subdomain is assumed to be composed of a thin strip beam of width bi (see Fig. 2a). For sandwich beams, it is often
assumed that the width of each beam is identical, i.e. bi is equal to b. The total potential energy p is written as the sum of
three terms:

p½j;w1;w2� ¼ p1½j;w1;w2� þ p2½j;w1;w2� þ p3½j;w1;w2� (1)

where p1 is the potential energy associated to the subdomain ‘‘1’’, p2 is the potential energy associated to the subdomain
‘‘2’’, and p3 is the potential energy associated to the connection. The independence of the in-plane and out-of-plane motion
is implicitly postulated in such a formulation. The first term is written as:

p1½j;w1;w2� ¼

Z L

0

1

2
GJ1½j0ðxÞ�2 þ

1

2
EI1½w

00
1ðxÞ�

2 dx (2)

where GJ1 is the beam torsional stiffness of the subdomain ‘‘1’’ and EI1 is the beam stiffness in the xz plane of the
subdomain ‘‘1’’ (which can be also denoted by EIy1). GJ1 (respectively, EI1) can be considered as the condensed notation of
G1J1 (respectively, E1I1), or ðGJÞ1 (respectively, ðEIÞ1) in case of different elastic moduli for both parts of the cross-section. L
y

z

L �

Fig. 1. Geometry of the hinged–hinged strip beam.
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Fig. 2. Characteristics of the cross-section. (a) Layered wood beams or partial composite beam. (b) Three-layer sandwich beam.

Fig. 3. Kinematics of the partially composite section.

N. Challamel / Journal of Sound and Vibration 325 (2009) 1012–10221014
is the length of the beam. The second term of the potential energy is similar to the first one:

p2½j;w1;w2� ¼

Z L

0

1

2
GJ2½j0ðxÞ�2 þ

1

2
EI2½w

00
2ðxÞ�

2 dx (3)

where GJ2 is the beam torsional stiffness of the subdomain ‘‘2’’ and EI2 is the beam stiffness in the xz plane of the
subdomain ‘‘2’’ (which can be also denoted by EIy2). GJ2 (respectively, EI2) can be also considered as the condensed
notation of G2J2 (respectively, E2I2), or ðGJÞ2 (respectively, ðEIÞ2) in case of different elastic moduli for both parts
of the cross-section. Finally, the last term of the total potential energy is written for the composite beam with partial
interaction as

p3½j;w1;w2� ¼

Z L

0

1

2
K½Duðj;w1;w2Þ�

2 dx with Du ¼ w2 �w1 � h0j and h0 ¼
h1 þ h2

2
(4)

The kinematics of the partially composite section with horizontal discontinuity line is shown in Fig. 3. It can be seen from
Eq. (4) that the interface slip Du depends on both the transversal deflections wi, but also on the torsional angle j. This
dependence leads to the full coupling between lateral and torsional vibrations. The interface slip Du has been calculated
from geometrical considerations based on the assumption of small torsional angle. The connector load-slip behaviour is
linear elastic with a constant slip modulus K. Full composite action (infinite slip stiffness, K !1) and non-composite
action (zero slip stiffness, K ! 0) represent upper and lower bounds for the partial composite action. In the case of
horizontal discontinuity (Fig. 3), the slip forces are due to torsion and to the difference in curvature with respect to the
weak axis.
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For the three layer sandwich beam (Fig. 2b), the total potential energy p is also the sum of three terms (Eq. (1) is still
valid), but the total potential energy of the soft core is equal to

p3½j;w1;w2� ¼

Z L

0

1

2
beG�g2 dx with g ¼ w2 �w1 � h0j

e
and h0 ¼ eþ

h1 þ h2

2
(5)

where G� is the shear modulus of the soft core and g is the shear strain in the soft interlayer. The comparison of Eqs. (4) and
(5) shows that there is equivalence between both structural systems with the following identities:

bG�

e
¼ K and h0 ¼ eþ

h1 þ h2

2
(6)

The layered or partial composite beam is obtained as a particular case with a vanishing depth of the interlayer e. Therefore,
the partial composite beam and the three-layer sandwich beam are strictly equivalent structural problems. The same
conclusion holds for the in-plane bending problem (see for instance Refs. [23,24]). With the substitution according to
Eq. (6), all results obtained in this study are also applicable to sandwich-type of beams.

It is chosen to make the presentation with the partial composite notation of Eq. (4). The kinetic energy is equal to

T½j;w1;w2� ¼

Z L

0

1

2
m1 _w

2
1 þ

1

2
m2 _w

2
2 þ

1

2
m0r2

0
_j2 dx with m0r2

0 ¼ m1r2
1 þm2r2

2 (7)

where m1 (respectively, m2) is the mass per unit length of the subdomain ‘‘1’’ (respectively, ‘‘2’’), and r1 (respectively, r2) is
the cross-sectional mass radius of gyration of the subdomain ‘‘1’’ (respectively, ‘‘2’’). The dynamics equations are obtained
via the Hamilton principle, leading to the partial-differential equations:

EI1wð4Þ1 � Kðw2 �w1 � h0jÞ þm1 €w1 ¼ 0

EI2wð4Þ2 þ Kðw2 �w1 � h0jÞ þm2 €w2 ¼ 0

�GJ1j00 � GJ2j00 � Kh0ðw2 �w1 � h0jÞ þm0r2
0
€j ¼ 0

8>>><
>>>:

(8)

The free vibrations problem is investigated in this paper, based on the following system:

EI1wð4Þ1 � Kðw2 �w1 � h0jÞ þm1 €w1 ¼ 0

EI2wð4Þ2 þ Kðw2 �w1 � h0jÞ þm2 €w2 ¼ 0

GJ0j00 þ Kh0ðw2 �w1 � h0jÞ �m0r2
0
€j ¼ 0

8>>><
>>>:

with GJ1 þ GJ2 ¼ GJ0 (9)

Note the fundamental difference with the model of Numayr and Qablan [27] who postulated a possible twist angle
difference between each component ðj1aj2Þ. However, even in the case where the twist angles of each component are
identical ðj1 ¼ j2 ¼ jÞ, as postulated in the present paper, the model investigated in Ref. [27] and the present model
coincide, only if the parameter h0 is vanishing ðh0 ¼ 0Þ. Therefore, the bending–torsional coupling of the present model is
quite different from the one studied in Ref. [27] in the soft core.

In the general case, for arbitrary boundary conditions, a numerical method is needed to solve the vibrations problem.
One of the most popular methods for the approximate integration of differential equations is the Bubnov–Galerkin method
(see for instance Ref. [30]). The finite difference method is employed by Numayr and Qablan [27] for the out-of-plane
vibrations of sandwich beams. Such numerical methods are not useful in the present paper, as closed-form solutions will
be available for some specific boundary conditions.
3. Free vibrations

The lateral–torsional vibrations of the pinned–pinned strip beam are studied in this paper. The boundary conditions
derived from application of Hamilton’s principle can be expressed in this case as

jð0Þ ¼ jðLÞ ¼ 0; w001ð0Þ ¼ w001 Lð Þ ¼ w002ð0Þ ¼ w002ðLÞ ¼ 0; w1ð0Þ ¼ w1ðLÞ ¼ w2ð0Þ ¼ w2ðLÞ ¼ 0 (10)

The solution is sought in the form

w1ðx; tÞ ¼ w0
1 sin

npx

L
sin Ot

w2ðx; tÞ ¼ w0
2 sin

npx

L
sin Ot

jðx; tÞ ¼ j0 sin
npx

L
sin Ot

8>>>>><
>>>>>:

(11)
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Introducing this solution in the partial-differential equation (9) leads to the characteristic equation:

EI1
np
L

� �4
þ K �m1O

2
�K Kh0

�K EI2
np
L

� �4
þ K �m2O

2
�Kh0

Kh0 �Kh0 GJ0
np
L

� �2
þ Kh2

0 �m0r2
0O

2

�������������

�������������
¼ 0 (12)

In the case of non-composite action (K ¼ 0), the uncoupled vibration frequencies ðO1;O2;O3Þ can be obtained:

O2
1 ¼

EI1

m1

np
L

� �4
; O2

2 ¼
EI2

m2

np
L

� �4
and O2

3 ¼
GJ0

m0r2
0

np
L

� �2
(13)

The first frequencies O1 and O2 are associated to a flexural vibrations mode of each component, whereas the last frequency
O3 corresponds to a pure torsional mode. In the general case, however, in the presence of composite action ðKa0Þ, the
flexural–torsional vibration modes are strongly coupled. This phenomenon is similar to the one observed for beams with
unsymmetrical cross-sections, where the beam undergoes combined flexural–torsional vibrations [26,30,31]. The
characteristic equation can be simplified as

EI1
np
L

� �4
�m1O

2
� �

EI2
np
L

� �4
�m2O

2
� �

GJ0
np
L

� �2
þ Kh2

0 �m0r2
0O

2
� �

þ K GJ0
np
L

� �2
�m0r2

0O
2

� �
EI0

np
L

� �4
�m0O

2
� �

¼ 0 with EI1 þ EI2 ¼ EI0 and m1 þm2 ¼ m0 (14)

Note that the introduction of the warping terms for symmetrical partially composite thin-walled beams can be easily
included (see Appendix A).

4. Resolution—dimensionless formulation

The dimensionless parameters are introduced as

o2 ¼
O2m0L4

EI0
; l ¼

EI0

GJ0
; r ¼

r0

L
; m1 ¼

m1

m0
; m2 ¼

m2

m0
; k1 ¼

EI1

EI0
; k2 ¼

EI2

EI0

k ¼ KL4 1

EI1
þ

1

EI2

� �
¼ KL4 EI0

EI1EI2
and a ¼ h0

L

� �2 EI1EI2

EI0GJ0
(15)

Note that some parameters are linked by the rule:

k1 þ k2 ¼ 1 and m1 þ m2 ¼ 1 (16)

The nonlinear frequency equation is then written with the dimensionless variables:

ðk1ðnpÞ4 � m1o2Þðk2ðnpÞ4 � m2o2ÞððnpÞ2 þ ka� r2lo2Þ þ kk1k2ððnpÞ2 � r2lo2ÞððnpÞ4 �o2Þ ¼ 0 (17)

In the case of non-composite action (k ¼ 0), the uncoupled vibrations frequencies are found again:

o2
1 ¼

k1

m1
ðnpÞ4; o2

2 ¼
k2

m2
ðnpÞ4 and o2

3 ¼
1

lr2
ðnpÞ2 (18)

Eq. (17) can also be written as a third-order polynomial equation which can be solved using Cardano’s method [32]:

ax3 þ bx2 þ cxþ d ¼ 0 with x ¼ o2 (19)

The constants are identified from Eq. (17) as

a ¼ �m1m2r2l

b ¼ r2lðk2m1 þ k1m2ÞðnpÞ4 þ m1m2ððnpÞ2 þ kaÞ þ kk1k2r2l

c ¼ �½k1k2ðnpÞ8r2lþ ðk2m1 þ k1m2ÞðnpÞ4ððnpÞ2 þ kaÞ þ kk1k2ðnpÞ2ð1þ r2lðnpÞ2Þ�
d ¼ k1k2ðnpÞ6½ðnpÞ2ððnpÞ2 þ kaÞ þ k�

8>>>>><
>>>>>:

(20)

Eq. (19) can be written in the canonical form

y3 þ pyþ q ¼ 0 with y ¼ xþ
b

3a
; p ¼

3ac � b2

3a2
and q ¼

27a2dþ 2b3
� 9abc

27a3
(21)
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It can be numerically checked that generally 4p3 þ 27q2o0, and then, the three solutions are given by

y1 ¼ 2

ffiffiffiffiffiffiffi
�

p

3

r
cos

arccos
3q

2p

ffiffiffiffiffiffiffi
�

3

p

s !
þ 2p

3

2
66664

3
77775; y2 ¼ 2

ffiffiffiffiffiffiffi
�

p

3

r
cos

arccos
3q

2p

ffiffiffiffiffiffiffi
�

3

p

s !
þ 4p

3

2
66664

3
77775

and

y3 ¼ 2

ffiffiffiffiffiffiffi
�

p

3

r
cos

arccos
3q

2p

ffiffiffiffiffiffiffi
�

3

p

s !

3

2
66664

3
77775 (22)

Therefore, the frequency solutions are obtained as

o2
1 ¼ 2

ffiffiffiffiffiffiffi
�

p

3

r
cos

arccos
3q

2p

ffiffiffiffiffiffiffi
�

3

p

s !
þ 2p

3

2
66664

3
77775�

b

3a

o2
2 ¼ 2

ffiffiffiffiffiffiffi
�

p

3

r
cos

arccos
3q

2p

ffiffiffiffiffiffiffi
�

3

p

s !
þ 4p

3

2
66664

3
77775�

b

3a

and

o2
3 ¼ 2

ffiffiffiffiffiffiffi
�

p

3

r
cos

arccos
3q

2p

ffiffiffiffiffiffiffi
�

3

p

s !

3

2
66664

3
77775�

b

3a
(23)

The evolution of the natural frequencies of each fundamental mode (n ¼ 1) is shown in Fig. 4 and 5 for two
unsymmetrical cases. The sensitivity of the natural frequencies to the dimensionless parameters is discussed thereafter. For
strip beams, the stiffness ratio l1 and l2 are calculated as

l1 ¼
EI1

GJ1
¼

1þ u1

2
and l2 ¼

EI2

GJ2
¼

1þ u2

2
(24)
Fig. 4. Evolution of the frequencies of each fundamental mode versus the connection parameter kFo1oo2oo3; unsymmetrical case: k1 ¼ k2 ¼ 0:5,

m1 ¼ 0:75, m2 ¼ 0:25, a ¼ 5� 10�3, lr2
¼ a=3.
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Fig. 5. Evolution of the frequencies of each fundamental mode versus the connection parameter kFo1oo2oo3; unsymmetrical case: m1 ¼ m2 ¼ 0:5,

k1 ¼ 0:75, k2 ¼ 0:25, a ¼ 5� 10�3, lr2
¼ 5a=9.
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where u1 denoted the Poisson’s ratio of subelement ‘‘1’’, whereas u2 denoted the Poisson’s ratio of subelement ‘‘2’’. For
instance, the global stiffness ratio can simplified for homogeneous subelements as

l1 ¼ l2 ¼
1þ u

2
) l ¼

EI0

GJ0
¼
l1GJ1 þ l2GJ2

GJ1 þ GJ2
¼

1þ u
2

(25)

where u is Poisson’s ratio of each subelement. Parameter a can be also expressed in terms of other dimensionless
parameters:

a ¼ k1k2l
4

h

L

� �2

with h ¼ h1 þ h2 (26)

Therefore the order of magnitude of the parameter a is typically comprises in the order of 10�4 or 10�3. The dimensionless
equivalent radius of gyration r̄ is calculated for the composite strip beam as

r2
¼

1

12
m1

h1

L

� �2

þ m2
h2

L

� �2
 !

(27)

Furthermore, for constant width ðb1 ¼ b2Þ and for homogeneous subelements ðE1 ¼ E2Þ, it is easily shown that the stiffness
ratio k1 and k2 are dependent on the height ratio via:

k1 ¼
h1

h
and k2 ¼

h2

h
(28)

Hence, there is a strong relationship between parameters a and lr2, obtained from Eqs. (26) and (27), leading to

lr2

a
¼

1

3

m1k2
1 þ m2k2

2

k1k2
(29)

Some particular cases can be deduced from Eq. (29). The case of a layered wood beam with two identical subelements
leads to

m1 ¼ m2 ¼ k1 ¼ k2 ¼
1

2
)

lr2

a ¼
1

3
(30)

This is also the value obtained in the more general case of two subelements with the same stiffness:

m1am2; k1 ¼ k2 ¼
1

2
)

lr2

a ¼
1

3
(31)

Finally, we give another example of unsymmetrical section, based on

m1 ¼ m2 ¼
1

2
; k1 ¼

3

4
; k2 ¼

1

4
)

lr2

a ¼
5

3

1

3
(32)

Figs. 4 and 5 show the sensitivity of the natural frequencies with respect to the connection parameter, for two
unsymmetrical beams. Fig. 4 corresponds to a beam with unsymmetrical inertia terms, whereas Fig. 5 is associated to
unsymmetrical stiffness terms. The shape of the frequency curve with respect to the dimensionless connection parameter
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k is close to the one observed for the in-plane partially composite vibration problem (see Ref. [8] for the partially composite
Euler–Bernoulli beams, or Ref. [12] for the partially composite Timoshenko beams). The frequencies grow with the stiffness
connection and tend towards a finite frequency value for the two lowest mode of the full-composite beam ðk!1Þ.
However, the third mode (predominant torsional mode) gives infinite frequencies when the dimensionless connection
parameter k tends towards an infinite value (see Figs. 4 and 5).

5. Case with two identical subelements

The shape of the frequency curve will be investigated with further details in the particular symmetrical case, with two
identical subelements. The order of magnitude of parameter a can be evaluated for a layered wood beam with two identical
subelements ðEI1 ¼ EI2 ¼ EI0=2Þ:

EI1 ¼ EI2 ¼
EI0

2
) a ¼ h0

L

� �2 EI0

4GJ0
¼

h

L

� �2 1þ u
32

with h ¼ h1 þ h2 (33)

where u is Poisson’s ratio. For the beam with two identical subelements, the following equalities can be assumed:

m1 ¼ m2 ¼ k1 ¼ k2 ¼
1

2
) r2

¼
1

48

h

L

� �2

) lr2
¼
a
3

(34)

In the case of the beam with two identical subelements, the natural frequency equation Eq. (17) is factorized by

ððnpÞ4 �o2Þ½ððnpÞ4 �o2ÞððnpÞ2 þ ka� r2lo2Þ þ kððnpÞ2 � r2lo2Þ� ¼ 0 (35)

The second-order polynomial term is developed as

lr2o4 � ðlr2
ðnpÞ4 þ ðnpÞ2 þ kðaþ lr2

ÞÞo2 þ ðnpÞ4ððnpÞ2 þ kaÞ þ kðnpÞ2 ¼ 0 (36)

whose solution is finally expressed as

o2
1 ¼ ðnpÞ

4

o2
2 ¼

lr2
ðnpÞ4 þ kaþ ðnpÞ2 þ klr2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½lr2
ðnpÞ4 þ kaþ ðnpÞ2 þ klr2

�2 � 4lr2
½ðnpÞ6 þ kaðnpÞ4 þ kðnpÞ2�

q
2lr2

and

o2
3 ¼

lr2
ðnpÞ4 þ kaþ ðnpÞ2 þ klr2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½lr2
ðnpÞ4 þ kaþ ðnpÞ2 þ klr2

�2 � 4lr2
½ðnpÞ6 þ kaðnpÞ4 þ kðnpÞ2�

q
2lr2

(37)

In this last case, the asymptotic values associated to the full-composite section is simplified as

k!1) o2
1 ¼ ðnpÞ

4; o2
2 !

ðnpÞ2

aþ lr2
ð1þ aðnpÞ2Þ � ðnpÞ

2

aþ lr2
and o2

3 ! kaþ lr2

lr2
(38)

In this symmetrical case, the two lowest modes coalesce for the non-composite beam (k ¼ 0), which is no more the case for
the partially composite beam (see Figs. 6–8). The third mode gives infinite frequencies when the dimensionless connection
Fig. 6. Evolution of the frequencies versus the connection parameter k—symmetrical case: m1 ¼ m2 ¼ k1 ¼ k2 ¼ 0:5, a ¼ 5� 10�3, lr2
¼ a=3.
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Fig. 7. Evolution of the frequencies of the two lowest mode versus the connection parameter k—symmetrical case; a 2 f10�3;2� 10�3;

3� 10�3; 4� 10�3;5� 10�3;6� 10�3
g.

Fig. 8. Natural frequencies spectra versus the connection parameter k—symmetrical case: a ¼ 5� 10�3, lr2
¼ a=3.
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parameter k tends towards an infinite value. According to Eq. (34), this last predominantly torsional frequency is
asymptotically given by

lr2
¼
a
3
; k!1 ) o2

3 ! 4k (39)

The results presented in Figs. 6–8 show the dimensionless frequencies with respect to the connection parameter k. The
frequencies clearly increase with the stiffness of the connection, and the frequency spectra of the full-composite beam have
been simply evaluated from an asymptotic method:

lr2
¼
a
3
; k!1 ) o2

1 ¼ ðnpÞ
4; o2

2 !
3

4

ðnpÞ2

a ð1þ aðnpÞ2Þ � 3

4

ðnpÞ2

a (40)

The finite character of the natural frequencies in the asymptotic case ðk!1Þ (see Eq. (40)) cannot be obtained when the
parameter a is vanishing, as implicitly assumed for instance in Ref. [27]. It is worth mentioning that the shape of the
frequencies curve obtained in these figures is very similar to the one obtained for the in-plane vibrations problem, except
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that the predominantly torsional mode has no finite threshold in case of the full composite beam ðk!1Þ. It has been
shown that this torsional frequency is proportional to the square root of the dimensionless connection parameter k for
large values of this parameter.

6. Conclusions

The lateral–torsional vibrations of composite beams are investigated in this paper, based on a variational approach.
Composite beams studied in this paper are classified as composite beams with interlayer slip (composite beams with
partial interaction or layered wood beams) or three-layer sandwich beams. It has been shown in this paper that both
structural systems are governed by the same nature of differential equations. The theoretical framework of
lateral–torsional vibrations of composite beams is given, based on the independence of the in-plane and out-of-plane
motion. Some engineering results are presented for the pinned–pinned strip composite beam. A simple closed-form
solution is achieved for the lateral–torsional natural frequencies. The results are analogous to the ones obtained for the in-
plane vibrations of composite beams (sandwich beam or composite beams with partial interaction) where the natural
frequencies increase with the stiffness of the connection. It is worth mentioning that the shape of the frequencies curve
obtained in these figures is very similar to the one obtained for the in-plane vibrations problem, except that the
predominantly torsional mode has no finite threshold in case of the full composite beam ðk!1Þ. It has been shown that
this torsional frequency is proportional to the square root of the dimensionless connection parameter k for large values of
this parameter. The other natural frequencies remain finite in case of the full-composite beams, as also observed for the in-
plane vibrations problem. Extension of these results to some more complex loading cases is envisaged, and a numerical
procedure will be probably needed in the general case.

Appendix A. Introduction of the warping effect

For symmetrical partially composite thin-walled beams, the warping terms may be easily added in the energy
functional p1 and p2 as

p1 þ p2 ¼

Z L

0

1
2ðG1J1 þ G2J2Þ½j0ðxÞ�2 þ 1

2ðE1Iw1 þ E2Iw2Þ½j00ðxÞ�2

1
2½E1Iy1½w

00
1ðxÞ�

2 þ E2Iy2½w
00
2ðxÞ�

2�

8<
:

9=
;dx (A.1)

In the case of free vibrations, the following system of differential equations is obtained from Eq. (9) corrected by the adding
warping terms:

EI1wð4Þ1 � Kðw2 �w1 � h0jÞ þm1 €w1 ¼ 0

EI2wð4Þ2 þ Kðw2 �w1 � h0jÞ þm2 €w2 ¼ 0

GJ0j00 � EIw0jð4Þ þ Kh0ðw2 �w1 � h0jÞ �m0r2
0
€j ¼ 0

8>>><
>>>:

with EIw0 ¼ E1Iw1 þ E2Iw2 (A.2)

Introducing the solution equation (11) in this coupled system of partial-differential equations leads to the calculation of the
determinant:

EI1
np
L

� �4
þ K �m1O

2
�K Kh0

�K EI2
np
L

� �4
þ K �m2O

2
�Kh0

Kh0 �Kh0 GJ0
np
L

� �2
þ EIw0

np
L

� �4
þ Kh2

0 �m0r2
0O

2

�������������

�������������
¼ 0 (A.3)

Therefore, previous results can be used by replacing the torsional stiffness GJ0 by the equivalent term

~G~J0 ¼ GJ0 þ EIw0
np
L

� �2
(A.4)

Finally, the natural frequencies equation is obtained from a generalisation of Eq. (14):

EI1
np
L

� �4
�m1O

2
� �

EI2
np
L

� �4
�m2O

2
� �

~G~J0
np
L

� �2
þ Kh2

0 �m0r2
0O

2
� �

þ K ~G~J0
np
L

� �2
�m0r2

0O
2

� �
EI0

np
L

� �4
�m0O

2
� �

¼ 0 (A.5)
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